e (3

Hanucanuve UDR Ha a3bikax C++ u Pascal

~

o ~
OpraHusarop]
kondpepenuun | lMPE/ICO®T

Hanucanume UDR Ha
A3bikax C++ un -
Pascal

CumMoHoB [1leHuc

. ~
. ~

FIREBIRDCONF 2023 | EP:qcoor

Otnuuuna UDR ot Legacy UDF

UDR Legacy UDF

 DyHKUMKM, NpoLEeaypPbl, TPUIrepDl

CTporum KOHTPOMb TUMNOB BXOOHbIX M BbIXOAHbIX
napameTposB. [lpocTtaa obpaboTka NULL.

EcTb obpaboTka MCKIUYMTENBHbIX CUTYaLLNMN
LloCcTyn K KOHTEKCTY TEKYLLLEro NOOKIOHYEHNS U
TpaH3akLmm

MOXHO rpynnmMpoBaTh Npoueaypbl M QYyHKUMM B
PSQL nakeTax

MoryT 6bITb HAMMCAaHbI Ha TFOOOM A3blKe
NPOrpPaMMMPOBaHMNS, €C/IN €CTb
cooTBeTCcTBYOWMM nnarnH External Engine.
Hanpumep, cyLecTBYOT NAarvHbl 415
HanuvcaHua Ha Java, NET. Ina C++ n Pascal

MCAONb3yeTca cCTaHAapPTHbIM NaarunH udr_engine.

CONF2023 = &Pencoor

e TONbKO GYyHKLUN

Cnabblt TUMNOB BXOAHbIX M BbIXO4HbIX
napamMeTpoB. HeckobKo BapraHTOB
obpaboTkim NULL,

Bo3BpaTt owmbok Yepes crneulpmasnbHble
3Ha4YeHus

bonee ObICTPbIE 3a CYHET YAPOLLEHHOrO
KOHTPOMA TUMOB BXOAHbIX W BbIXO4HbIX
napamMeTpoB

ToNbKO HM3KOYPOBHEBDLIE A3bIKM
nporpamMmmmpoBaHma Pascal, C, C++.

CuHtakcuc o6bnasneHunsa UDR

{CREATE [OR ALTER] | RECREATE} FUNCTION funcname [(<inparam> [, <inparam> ...])]
RETURNS <type> [COLLATE collation] [DETERMINISTIC]

EXTERNAL NAME <extname> ENGINE <engine>

[AS <extbody>]

{CREATE [OR ALTER] | RECREATE} PROCEDURE procname [(<inparam> [, <inparam> ...])]
RETURNS (<outparam> [<outparam> ...])

EXTERNAL NAME <extname> ENGINE <engine>

[AS <extbody>]

{CREATE [OR ALTER] | RECREATE} TRIGGER trigname

{<relation_trigger_legacy> | <relation_trigger_sql2003> | <database_trigger> | <ddl_trigger> }
EXTERNAL NAME <extname> ENGINE <engine>

[AS <extbody>]

<extname> ::= '<module name>!<routine name>[!<misc info>]'
<extbody> ::= npoun3BOMbHbIA CTPOKOBbI nTEpPan.
EUNF 2023 [| | HTTPS://FBCONF.RU/
BPECO®T

https://fbconf.ru/

[TpyMep BHEWHUX PYHKLLUN

CREATE FUNCTION sum_args (n1 INTEGER, n2 INTEGER, n3 INTEGER)
RETURNS INTEGER

EXTERNAL NAME 'udrcpp_example!sum_args' ENGINE UDR;

CREATE FUNCTION regex_replace (regex VARCHAR(60), str VARCHAR (60), replacement VARCHAR (60))
RETURNS varchar(60)

EXTERNAL NAME 'org.firebirdsql.fbjava.examples.fbjava_example.FbRegex.replace(String, String, String)'
ENGINE java;

CONF2023 = &Pencoor

[TpnMep BHeWHUX npoueanyp

CREATE PROCEDURE gen_rows_pascal (start_n INTEGER NOT NULL, end_n INTEGER NOT NULL)
RETURNS (result INTEGER)

EXTERNAL NAME 'pascaludrigen_rows' ENGINE udr;

CREATE OR ALTER PROCEDURE write_log (message VARCHAR(100))
EXTERNAL NAME 'pascaludr!write_log' ENGINE udr;

CREATE OR ALTER PROCEDURE employee_pgsql (
dummy INTEGER = 1
)
RETURNS(id TYPE OF COLUMN employee.id, name TYPE OF COLUMN employee.name)
EXTERNAL NAME 'org.firebirdsql.fbjava.examples.fbjava_example.Fbldbc
.executeQuery()!jdbc:postgresql:employee|postgres|postgres'
ENGINE java
AS Q'{select * from employee}';

CONF2023 = &P:ncoor

[TpMep BHELWWHUX TPUITepoB

CREATE TABLE persons (
id INTEGER NOT NULL,
name VARCHAR(60) NOT MULL,
address VARCHAR(60),
info BLOB SUB_TYPE TEXT

)i

CREATE TABLE replicate_config (name VARCHAR(63) NOT NULL, data_source VARVHAR(255) NOT NULL);
INSERT INTO replicate_config (name, data_source) VALUES ('ds1’, 'c:\temp\slave.fdb");

CREATE TRIGGER persons_replicate

AFTER INSERT ON persons
EXTERNAL NAME 'udrcpp_example!replicate!ds1l’ ENGINE udr;

CONF2023 = &Pencoor

Ucnonb3oBaHue UDR B nakeTax

CREATE OR ALTER PACKAGE REGEXP
AS
BEGIN

PROCEDURE preg_match(APattern VARCHAR(8191), ASubject VARCHAR(8191))
RETURNS (Matches VARCHAR(8191));

FUNCTION preg_replace(APattern VARCHAR(8191), AReplacement VARCHAR(8191), ASubject VARCHAR(8191))
RETURNS VARCHAR(8191);

PROCEDURE preg_split(APattern VARCHAR(8191), ASubject VARCHAR(8191))
RETURNS (Lines VARCHAR(8191));

FUNCTION preg_quote(AStr VARCHAR(8191), ADelimiter CHAR(10) DEFAULT NULL)
RETURNS VARCHAR(8191);

END

CONF2023 = &Pencoor

Ucnonb3oBaHue UDR B nakeTax

RECREATE PACKAGE BODY REGEXP
AS
BEGIN

PROCEDURE preg_match(APattern VARCHAR(8192), ASubject VARCHAR(8192))

RETURNS (Matches VARCHAR(8192))

EXTERNAL NAME 'PCRE!preg_match' ENGINE UDR;

FUNCTION preg_replace(APattern VARCHAR(8192), AReplacement VARCHAR(8192), ASubject VARCHAR(8192))

RETURNS VARCHAR(8192)
EXTERNAL NAME 'PCRE!preg_replace' ENGINE UDR;

END

CONF2023 = &Pencoor

Touka Bxoaa Ha aA3bike Pascal

library MyUdr;
{$IFDEF FPC}

{$MODE DELPHI}{$H+}
{$ENDIF}

uses
{$IFDEF unix}
cthreads,
cmem,
{$ENDIF}
UdrInit in 'Udrlnit.pas’,
SumArgsFunc in 'SumArgsFunc.pas’;

exports firebird_udr_plugin;

end.

CONF2023 = &Pencoor

Touka Bxoga Ha a3bike C++

#define FB_UDR_STATUS_TYPE ::Firebird:: ThrowStatusWrapper

#include "ibase.h"
#include "firebird/UdrCppEngine.h"

using namespace Firebird;

FB_UDR_IMPLEMENT_ENTRY_POINT

B KauecTBe anbTepHaTUBbI MOXHO ncnonb3oBaTtb CheckStatusWrapper

CONF2023 = &Pencoor

Perncrpauunsa ¢aépuk B Pascal

unit Udrlnit;

interface

uses Firebird;

function firebird_udr_plugin(AStatus: IStatus; AUnloadFlagLocal: BooleanPtr; AUdrPlugin: IUdrPlugin): BooleanPtr; cdecl;
implementation

uses SumArgsFunc;

var myUnloadFlag: Boolean; theirUnloadFlag: BooleanPtr;

function firebird_udr_plugin (AStatus: IStatus; AUnloadFlaglLocal: BooleanPtr; AUdrPlugin: IUdrPlugin): BooleanPtr; cdecl;
begin
AUdrPlugin.registerFunction(AStatus, 'sum_args', TSumArgsFunctionFactory.Create());
AUdrPlugin.registerProcedure(AStatus, 'sum_args_proc', TSumArgsProcedureFactory.Create
AUdrPlugin.registerTrigger(AStatus, 'test_trigger', TMyTriggerFactory.Create());
theirUnloadFlag := AUnloadFlaglLocal;
Result := @myUnloadFlag;
end;

initialization

myUnloadFlag := false;
finalization

if ((theirUnloadFlag <> nil) and not myUnloadFlag) then theirUnloadFlag” := true;
end.

CONF2023 = &Pencoor

Peanusauua ¢abpuku dyHkuum Ha Pascal

unit SumArgsFunc;
interface

uses Firebird;

type
TSumArgsInMsg = record
nl: Integer; n1Null: WordBool;
n2: Integer; n2Null: WordBool;
n3: Integer; n3Null: WordBool;
end;
PSumArgsinMsg = "TSumArgsInMsg;

TSumArgsOutMsg = record

result: Integer; resultNull: WordBool;
end;
PSumArgsOutMsg = A"TSumArgsOutMsg;

TSumArgsFunctionFactory = class(IUdrFunctionFactoryImpl)
procedure dispose(); override;

procedure setup(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata; AInBuilder: IMetadataBuilder;
AOutBuilder: IMetadataBuilder); override;

function newltem(AStatus: IStatus; AContext: IExternalContext;

AMetadata: IRoutineMetadata): IExternalFunction; override;
end;

CONF2023 = &Pencoor

Peanusauua ¢abpuku dyHkuum Ha Pascal

implementation
{ TSumArgsFunctionFactory }

procedure TSumArgsFunctionFactory.dispose;
begin

Destroy;
end;

function TSumArgsFunctionFactory.newltem(AStatus: IStatus;

AContext: |IExternalContext; AMetadata: IRoutineMetadata): |IExternalFunction;
begin

Result := TSumArgsFunction.Create();
end;

procedure TSumArgsFunctionFactory.setup(AStatus: IStatus;
AContext: |IExternalContext; AMetadata: IRoutineMetadata;
AlnBuilder, AOutBuilder: IMetadataBuilder);

begin

end;

CONF2023 = &Pencoor

Peanusauusa ¢yHkuumm Ha Pascal

unit SumArgsFunc;
interface

uses Firebird;
type

TSumArgsInMsg = record

nl: Integer; n1Null: WordBool;

n2: Integer; n2Null: WordBool;

n3: Integer; n3Null: WordBool;
end;
PSumArgsinMsg = "TSumArgsInMsg;

TSumArgsOutMsg = record

result: Integer; resultNull: WordBool;
end;
PSumArgsOutMsg = A"TSumArgsOutMsg;

TSumArgsFunction = class(IExternalFunctionImpl)
procedure dispose(); override;

procedure getCharSet(AStatus: IStatus; AContext: IExternalContext;
AName: PAnsiChar; ANameSize: Cardinal); override;

procedure execute(AStatus: IStatus; AContext: IExternalContext;

AInMsg: Pointer; AOutMsg: Pointer); override;
end;

CONF2023 = &Pencoor

Peanusauusa ¢yHkuumm Ha Pascal

implementation

{ TSumArgsFunction }

procedure TSumArgsFunction.dispose;
begin

Destroy;
end;

procedure TSumArgsFunction.execute(AStatus: IStatus; AContext: IExternalContext; AInMsg, AOutMsg: Pointer);
var
xInput: PSumArgsinMsg;
xOutput: PSumArgsOutMsg;
begin
// npeobpa3oBbiBaeM yKasaTen Ha BXOA U BbIXOA, K TUMM3NPOBAHHbIM
xInput := PSumArgsinMsg(AlnMsg);
xOutput := PSumArgsOutMsg(AOutMsg);
// ecan oanH n3 aprymeHTos NULL 3Haumnt u pesyabtat NULL
xOutput?.resultNull := xInput®.n1Null or xInput”.n2Null or xInput*.n3Null;
xOutput?.result := xInput”®.nl + xInput?.n2 + xInput”.n3;
end;

procedure TSumArgsFunction.getCharSet(AStatus: IStatus; AContext: |IExternalContext; AName: PAnsiChar; ANameSize: Cardinal);
begin

end;

end.

CONF2023 = &P:ncoor

Peanusauusa ¢yHkumm Ha C++

#include "UdrCppExample.h"
using namespace Firebird;

struct TSumArgsIinMsg

{
ISC_LONG n1; ISC_SHORT n1Null;
ISC_LONG n2; ISC_SHORT n2Null;
ISC_LONG n3; ISC_SHORT n3Null;

i
struct TSumArgsOutMsg

ISC_LONG result; ISC_SHORT resultNull;
37

FB_UDR_BEGIN_FUNCTION(sum_args)
FB_UDR_EXECUTE_FUNCTION
{

auto input = reinterpret_cast<TSumArgsInMsg*>(in);
auto output = reinterpret_cast<TSumArgsOutMsg*>(out);

output->resultNull = (input->n1Null || input->n2Null || input->n3Null) ? FB_TRUE : FB_FALSE;
output->result = input->n1 + input->n2 + input->n3;

b
FB_UDR_END_FUNCTION

FB_UDR_IMPLEMENT_ENTRY_POINT

CONF2023 = &Pencoor

Peanusauua ¢abpuku

unit GenRowsProc;
interface

uses
Firebird, SysUtils;

type
TGenRowsFactory = class(IUdrProcedureFactoryImpl)
procedure dispose(); override;

procedure setup(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata; AlnBuilder: IMetadataBuilder;
AOutBuilder: IMetadataBuilder); override;

function newltem(AStatus: IStatus; AContext: IExternalContext;

AMetadata: IRoutineMetadata): IExternalProcedure; override;
end;

]]
BPEACO®T

CONF 2023

npouenypbl HA Pascal

Peanusauuna ¢abpumkum npoueanypnbl Ha Pascal

implementation
{ TGenRowsFactory }

procedure TGenRowsFactory.dispose;
begin

Destroy;
end;

function TGenRowsFactory.newltem(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata): IExternalProcedure;

begin
Result := TGenRowsProcedure.create;

end;

procedure TGenRowsFactory.setup(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata; AInBuilder, AOutBuilder: IMetadataBuilder);

begin

end;

CONF2023 = &Pencoor

Peanusauunsa npoueanypbl Ha Pascal

interface
uses Firebird, SysUtils;
type
TInput = record
start: Integer; startNull: WordBool;
finish: Integer; finishNull: WordBool;
end;
PInput = ~TInput;

TOutput = record

n: Integer; nNull: WordBool;
end;
POutput = ~TOutput;

TGenRowsProcedure = class(IExternalProcedureImpl)
public
procedure dispose(); override;

procedure getCharSet(AStatus: IStatus; AContext: IExternalContext;
AName: PAnsiChar; ANameSize: Cardinal); override;

function open(AStatus: IStatus; AContext: IExternalContext; AInMsg: Pointer;
AOutMsg: Pointer): IExternalResultSet; override;
end;

TGenRowsResultSet = class(IExternalResultSetImpl)
Input: PInput;
Output: POutput;

procedure dispose(); override;

function fetch(AStatus: IStatus): Boolean; override;
end;

CONF2023 = &Pencoor

Peanusauunsa npouenypbl

function TGenRowsProcedure.open(AStatus: IStatus; AContext: IExternalContext;
AlnMsg, AOutMsg: Pointer): IExternalResultSet;
begin
Result := TGenRowsResultSet.create;
with TGenRowsResultSet(Result) do
begin
Input := AInMsg;
Output := AOutMsg;
end;

// ecnu oanH 13 BxoaHbIx aprymeHTtoB NULL HMuero He Bo3BpallaeM
if PInput(AInMsg).startNull or PInput(AInMsg).finishNull then
begin

POutput(AOutMsg).nNull := True;

// HaMepeHHO CTaBMM BbIXOAHOW pe3y/ibTaT TakuUM, YTOObI

// metoa TGenRowsResultSet.fetch BepHyn false

Output.n := Input.finish;

exit;
end;
// NpoBepKun
if PInput(AInMsg).start > PInput(AInMsg).finish then

raise Exception.Create('First parameter greater then second parameter.');

with TGenRowsResultSet(Result) do
begin
// HayanbHoe 3HayeHune
Output.nNull := False;
Output.n := Input.start - 1;
end;
end;

CONF2023 = &P:ncoor

Ha Pascal

Peanusauunsa npoueanypbl Ha Pascal

{ TGenRowsResultSet }

procedure TGenRowsResultSet.dispose;
begin

Destroy;
end;

// Ecnu Bo3BpawaeT True TO n3BJfieKaeTcs ovepeaHas 3annucb U3 Habopa AaHHbIX.
// Ecnn Bo3BpallaeT False To 3anncu B Habope AaHHbIX 3aKOHYUITUCH
// HOBble 3HA4YeHUS B BbIXOAHOM BEKTOPE BbIYUCASOTCS KaXabl pas
// Npwn Bbl30Be 3TOro MeToaa
function TGenRowsResultSet.fetch(AStatus: IStatus): Boolean;
begin
Inc(Output.n);
Result := (Output.n <= Input.finish);
end;

CONF2023 = &P:ncoor

Peanusauusa npouepypbl Ha C++

#include "UdrCppExample.h"
using namespace Firebird;

struct TInput

{
ISC_LONG start; ISC_SHORT startNull;

ISC_LONG finish; ISC_SHORT finishNull;
b

struct TOutput

{
ISC_LONG result; ISC_SHORT resultNull;
¥

CONF2023 = &Pencoor

Peanusauusa npouepypbl Ha C++

FB_UDR_BEGIN_PROCEDURE(gen_rows)
FB_UDR_EXECUTE_PROCEDURE
{
input = reinterpret_cast<TInput*>(in);
output = reinterpret_cast<TOutput*>(out);

output->resultNull = (input->startNull || input->finishNull) ? FB_TRUE : FB_FALSE;
if (output->resultNull) {
output->result = input->finish;
) else {
if (input->start > input->finish) {
ISC_STATUS statusVector[] = {
isc_arg_gds, isc_random,
isc_arg_string, (ISC_STATUS)"First parameter greater then second parameter.”,
isc_arg_end
+i
throw Firebird: :FbException(status, statusVector);
b

b
b

TInput* input = nullptr;
TOutput output = nullptr;

FB_UDR_FETCH_PROCEDURE
{

b
FB_UDR_END_PROCEDURE

return output->result++ < input->finish;

CONF2023 = &Pencoor

Peanusauusa ¢aébpuku tpurrepa Ha Pascal

unit TestTrigger;
interface

uses
Firebird, SysUtils;

type

TMyTriggerFactory = class(IUdrTriggerFactoryImpl)
procedure dispose(); override;

procedure setup(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata; AFieldsBuilder: IMetadataBuilder); override;

function newltem(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata): IExternalTrigger; override;
end;

CONF2023 = &Pencoor

Peanusauusa ¢aébpuku tpurrepa Ha Pascal

implementation

procedure TMyTriggerFactory.dispose;
begin

Destroy;
end;

function TMyTriggerFactory.newltem(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata): IExternalTrigger;

begin
Result := TMyTrigger.create;

end;

procedure TMyTriggerFactory.setup(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata; AFieldsBuilder: IMetadataBuilder);
begin

end;

CONF2023 = &Pencoor

Peanunsauusa tpurrepa Ha Pascal

interface

type
TFieldsMessage = record
Id: Integer; IdNull: WordBool;
A: Integer; ANull: WordBool;
B: Integer; BNull: WordBool;
Name: record
Length: Word;
Value: array [0 .. 399] of AnsiChar;
end;
NameNull: WordBool;
end;
PFieldsMessage = ~TFieldsMessage;

TMyTrigger = class(IExternalTriggerImpl)
procedure dispose(); override;

procedure getCharSet(AStatus: IStatus; AContext: IExternalContext;
AName: PAnsiChar; ANameSize: Cardinal); override;

procedure execute(AStatus: IStatus; AContext: IExternalContext;

AAction: Cardinal; AOIdMsg: Pointer; ANewMsg: Pointer); override;
end;

CONF2023 = &Pencoor

Peanunsauusa tpurrepa Ha Pascal

procedure TMyTrigger.execute(AStatus: IStatus; AContext: IExternalContext;
AAction: Cardinal; AOldMsg, ANewMsg: Pointer);
var
x0ld, xNew: PFieldsMessage;
begin
x0ld := PFieldsMessage(AOIdMsg);
xNew := PFieldsMessage(ANewMsg);
case AAction of
IExternalTrigger.ACTION_INSERT:
begin
if xNew.BNull and not xNew.ANull then
begin
XNew.B := xNew.A + 1;
XNew.BNull := False;
end;
end;

IExternalTrigger.ACTION_UPDATE:
begin
if xNew.BNull and not xNew.ANull then
begin
XNew.B := xNew.A + 1;
XNew.BNull := False;
end;
end;

IExternalTrigger.ACTION_DELETE:
begin

end;

end;
end;

CONF2023 = &Pencoor

OTo6paxxeHne TMNoB AAaHHbIX

BOOLEAN ISC_BOOLEAN Boolean, ByteBool FB_BOOLEAN
SMALLINT short Smallint FB_SMALLINT
INTEGER ISC_LONG Integer FB_INTEGER
BIGINT Int64 FB_BIGINT
FLOAT float Single FB_FLOAT
DOUBLE PRECISION double Double FB_DOUBLE
CHAR(N) char[M] array of AnsiChar[0 .. M -1] FB_CHAR
record

Length: Word;

VARCHAR(N) vary<m> value: array of AnsiChar(0 .. M -1]; FB_INTL_VARCHAR
end

TIME ISC_TIME ISC_TIME FB_TIME

DATE ISC_DATE ISC_DATE FB_DATE

TIMESTAMP ISC_TIMESTAMP ISC_TIMESTAMP FB_TIMESTAMP

BLOB ISC_QUAD ISC_QUAD FB_BLOB

CONF2023 = &P:ncoor

[MpuHypauTenbHana yctaHoBKa TunoB Ha Pascal

procedure TSumArgsFunctionFactory.setup(AStatus: IStatus;
AContext: IExternalContext; AMetadata: IRoutineMetadata;
AInBuilder, AOutBuilder: IMetadataBuilder);

begin

AlnBuilder.setType(AStatus, 0, SQL_LONG + 1);
AlnBuilder.setType(AStatus, 1, SQL_LONG + 1);
AlnBuilder.setType(AStatus, 2, SQL_LONG + 1);

AOutBuilder.setType(AStatus, 0, SQL_LONG + 1);
end;

CONF2023 = &Pencoor

MpuHyanTenbHas yctaHoBKa TunoB Ha C++

#include "UdrCppExample.h"
using namespace Firebird;

FB_UDR_BEGIN_FUNCTION(sum_args)
FB_UDR_MESSAGE(InMessage,
(FB_BIGINT, n1)
(FB_BIGINT, n2)
(FB_BIGINT, n3)

);

FB_UDR_MESSAGE(OutMessage,
(FB_BIGINT, result)

)i

FB_UDR_EXECUTE_FUNCTION

{
out->resultNull = (in->n1Null || in->n2Null || in->n3Null) ? FB_TRUE : FB_FALSE;
out->result = in->n1 + in->n2 + in->n3;

b

FB_UDR_END_FUNCTION

FB_UDR_IMPLEMENT_ENTRY_POINT

CONF2023 = &Pencoor

Pa6oTta ¢ BLOB Ha Pascal

var
att: IAttachment;
trx: ITransaction;
blob: IBlob;
buffer: array [0 .. 32767] of AnsiChar;
I: Integer;
begin
try
att := AContext.getAttachment(AStatus);
trx := AContext.getTransaction(AStatus);
blob := att.openBlob(AStatus, trx, ABlobld, 0, nil);
while True do
case blob.getSegment(AStatus, SizeOf(buffer), @buffer, @) of
IStatus.RESULT_OK:
AStream.WriteBuffer(buffer, I);
IStatus.RESULT_SEGMENT:
AStream.WriteBuffer(buffer, I);
else
break;
end;
AStream.Position := 0;
blob.close(AStatus);
blob := nil;
finally
if Assigned(blob) then blob.release;
if Assigned(trx) then trx.release;
if Assigned(att) then att.release;
end;
end;

CONF2023 = &Pencoor

Pa6ota ¢c BLOB Ha C++

Firebird: :AutoRelease<Firebird: :IAttachment> att(context->getAttachment(status));
Firebird: :AutoRelease<Firebird::ITransaction> tra(context->getTransaction(status));
Firebird: :AutoRelease<Firebird::IBlob> bodyBlob(att->openBlob(status, tra, &in->body, 0, nullptr));
std::vector<char> vBuffer(MAX_SEGMENT_SIZE);
auto buffer = vBuffer.data();
while (true) {
unsigned int | = 0;
switch (bodyBlob->getSegment(status, MAX_SEGMENT_SIZE, buffer, &l))
{
case Firebird::IStatus::RESULT_OK:
case Firebird::IStatus::RESULT_SEGMENT:
requestBody.write(buffer, 1);
continue;
default:
bodyBlob->close(status);
bodyBlob.release();
break;
b
b
// set beginning of stream
requestBody.seekg(0, std::ios::beg);

CONF2023 = &Pencoor

KoHTekcT coeanHeHusa n TpaH3akumm Pascal

var
att: IAttachment;
trx: ITransaction;
stmt: IStatement;
begin
try
att := AContext.getAttachment(AStatus);
trx := AContext.getTransaction(AStatus);
stmt := att.prepare(status, tra,
0, SQL_APPEND_LOG,
3, IStatement.PREPARE_PREFETCH_METADATA
)i
stmt.execute(status, tra,
input.getMetadata(),
input.getData(),
nil, nil
)i
stmt.free(status);
finally
if Assigned(stmt) then stmt.release;
if Assigned(trx) then trx.release;
if Assigned(att) then att.release;
end;
end;

CONF2023 = &Pencoor

KoHTeKkcT coeanHeHusa un TpaHsakuum C++

Firebird: :AutoRelease<Firebird: :IAttachment> att(context->getAttachment(status));
Firebird: :AutoRelease<Firebird::ITransaction> tra(context->getTransaction(status));
Firebird: :AutoRelease<Firebird::IStatement> stmt(
att->prepare(status, tra,
0, SQL_APPEND_LOG,
3,
IStatement::PREPARE_PREFETCH_METADATA

)

)i

stmt->execute(status, tra,
input.getMetadata(),
input.getData(),
nullptr, nullptr

)i

stmt->free(status);

stmt.release();

CONF2023 = &Pencoor

Metona getCharset

procedure TJsonFunction.getCharSet(AStatus: IStatus; AContext: IExternalContext;
AName: PAnsiChar; ANameSize: Cardinal);

begin
FillChar(AName, ANameSize, #0);
StrCopy(AName, 'UTF8');

end;

FB_UDR_BEGIN_PROCEDURE(ftsLogByDdKey)

void getCharSet(ThrowStatusWrapper* status, IExternalContext* context,
char* name, unsigned nameSize)

{

memset(name, 0, nameSize);

const std::string charset = "UTF8";
charset.copy(name, charset.length());

by

FB_UDR_EXECUTE_PROCEDURE

{

b
FB_UDR_END_PROCEDURE

CONF2023 = &Pencoor

MeToabl ocBo6oXaawwme uHtepdpeunc

e |Attachment::detach

* |Attachment::dropDatabase
* |Transaction::commit

* |Transaction::rollback

e |Statement::free

* |ResultSet::close

e |Blob::cancel

* |Blob::close

* |Service::detach

* |Events::cancel

CONF2023 = &Pencoor

Cnacu6o 3a BHuMaHue!

~

Bonpochl

~
® ~

FIREBIRDCONF 2023 | EP:qcoor

