
Написание UDR на языках C++ и Pascal

Организатор
конференции

Написание UDR на
языках C++ и
Pascal
Симонов Денис

Отличия UDR от Legacy UDF
UDR
• Функции, процедуры, триггеры
• Строгий контроль типов входных и выходных
параметров. Простая обработка NULL.

• Есть обработка исключительных ситуаций
• Доступ к контексту текущего подключения и
транзакции

• Можно группировать процедуры и функции в
PSQL пакетах

• Могут быть написаны на любом языке
программирования, если есть
соответствующий плагин External Engine.
Например, существуют плагины для
написания на Java, .NET. Для С++ и Pascal
используется стандартный плагин udr_engine.

Legacy UDF
• Только функции
• Слабый типов входных и выходных
параметров. Несколько вариантов
обработки NULL.

• Возврат ошибок через специальные
значения

• Более быстрые за счёт упрощенного
контроля типов входных и выходных
параметров

• Только низкоуровневые языки
программирования Pascal, C, C++.

fbconf

{CREATE [OR ALTER] | RECREATE} FUNCTION funcname [(<inparam> [, <inparam> ...])]
RETURNS <type> [COLLATE collation] [DETERMINISTIC]
EXTERNAL NAME <extname> ENGINE <engine>
[AS <extbody>]

{CREATE [OR ALTER] | RECREATE} PROCEDURE procname [(<inparam> [, <inparam> ...])]
RETURNS (<outparam> [<outparam> ...])
EXTERNAL NAME <extname> ENGINE <engine>
[AS <extbody>]

{CREATE [OR ALTER] | RECREATE} TRIGGER trigname
{<relation_trigger_legacy> | <relation_trigger_sql2003> | <database_trigger> | <ddl_trigger> }
EXTERNAL NAME <extname> ENGINE <engine>
[AS <extbody>]

<extname> ::= '<module name>!<routine name>[!<misc info>]‘

<extbody> ::= произвольный строковый литерал.

HTTPS://FBCONF.RU/

Синтаксис объявления UDR

https://fbconf.ru/

Пример внешних функции
CREATE FUNCTION sum_args (n1 INTEGER, n2 INTEGER, n3 INTEGER)
RETURNS INTEGER
EXTERNAL NAME 'udrcpp_example!sum_args' ENGINE UDR;

CREATE FUNCTION regex_replace (regex VARCHAR(60), str VARCHAR (60), replacement VARCHAR (60))
RETURNS varchar(60)
EXTERNAL NAME 'org.firebirdsql.fbjava.examples.fbjava_example.FbRegex.replace(String, String, String)'
ENGINE java;

Пример внешних процедур
CREATE PROCEDURE gen_rows_pascal (start_n INTEGER NOT NULL, end_n INTEGER NOT NULL)
RETURNS (result INTEGER)
EXTERNAL NAME 'pascaludr!gen_rows' ENGINE udr;

CREATE OR ALTER PROCEDURE write_log (message VARCHAR(100))
EXTERNAL NAME 'pascaludr!write_log' ENGINE udr;

CREATE OR ALTER PROCEDURE employee_pgsql (
 dummy INTEGER = 1
)
RETURNS(id TYPE OF COLUMN employee.id, name TYPE OF COLUMN employee.name)
EXTERNAL NAME 'org.firebirdsql.fbjava.examples.fbjava_example.FbJdbc
.executeQuery()!jdbc:postgresql:employee|postgres|postgres'
ENGINE java
AS Q'{select * from employee}';

Пример внешних триггеров
CREATE TABLE persons (
 id INTEGER NOT NULL,
 name VARCHAR(60) NOT MULL,
 address VARCHAR(60),
 info BLOB SUB_TYPE TEXT
);

CREATE TABLE replicate_config (name VARCHAR(63) NOT NULL, data_source VARVHAR(255) NOT NULL);

INSERT INTO replicate_config (name, data_source) VALUES ('ds1', 'c:\temp\slave.fdb');

CREATE TRIGGER persons_replicate
AFTER INSERT ON persons
EXTERNAL NAME 'udrcpp_example!replicate!ds1' ENGINE udr;

Использование UDR в пакетах
CREATE OR ALTER PACKAGE REGEXP
AS
BEGIN

 PROCEDURE preg_match(APattern VARCHAR(8191), ASubject VARCHAR(8191))
 RETURNS (Matches VARCHAR(8191));

 FUNCTION preg_replace(APattern VARCHAR(8191), AReplacement VARCHAR(8191), ASubject VARCHAR(8191))
 RETURNS VARCHAR(8191);

 PROCEDURE preg_split(APattern VARCHAR(8191), ASubject VARCHAR(8191))
 RETURNS (Lines VARCHAR(8191));

 FUNCTION preg_quote(AStr VARCHAR(8191), ADelimiter CHAR(10) DEFAULT NULL)
 RETURNS VARCHAR(8191);

END

Использование UDR в пакетах
RECREATE PACKAGE BODY REGEXP
AS
BEGIN

 PROCEDURE preg_match(APattern VARCHAR(8192), ASubject VARCHAR(8192))
 RETURNS (Matches VARCHAR(8192))
 EXTERNAL NAME 'PCRE!preg_match' ENGINE UDR;

FUNCTION preg_replace(APattern VARCHAR(8192), AReplacement VARCHAR(8192), ASubject VARCHAR(8192))
RETURNS VARCHAR(8192)
EXTERNAL NAME 'PCRE!preg_replace' ENGINE UDR;

…
END

Точка входа на языке Pascal
library MyUdr;
{$IFDEF FPC}
 {$MODE DELPHI}{$H+}
{$ENDIF}

uses
{$IFDEF unix}
 cthreads, // the c memory manager is on some systems much faster for multi-threading
 cmem,
{$ENDIF}
 UdrInit in 'UdrInit.pas',
 SumArgsFunc in 'SumArgsFunc.pas';

 exports firebird_udr_plugin;

end.

Точка входа на языке C++
#define FB_UDR_STATUS_TYPE ::Firebird::ThrowStatusWrapper

#include "ibase.h"
#include "firebird/UdrCppEngine.h"

using namespace Firebird;

…

FB_UDR_IMPLEMENT_ENTRY_POINT

В качестве альтернативы можно использовать CheckStatusWrapper

Регистрация фабрик в Pascal
unit UdrInit;

interface

uses Firebird;

function firebird_udr_plugin(AStatus: IStatus; AUnloadFlagLocal: BooleanPtr; AUdrPlugin: IUdrPlugin): BooleanPtr; cdecl;

implementation

uses SumArgsFunc;

var myUnloadFlag: Boolean; theirUnloadFlag: BooleanPtr;

function firebird_udr_plugin (AStatus: IStatus; AUnloadFlagLocal: BooleanPtr; AUdrPlugin: IUdrPlugin): BooleanPtr; cdecl;
begin
 AUdrPlugin.registerFunction(AStatus, 'sum_args', TSumArgsFunctionFactory.Create());
 AUdrPlugin.registerProcedure(AStatus, 'sum_args_proc', TSumArgsProcedureFactory.Create
 AUdrPlugin.registerTrigger(AStatus, 'test_trigger', TMyTriggerFactory.Create());
 theirUnloadFlag := AUnloadFlagLocal;
 Result := @myUnloadFlag;
end;

initialization
 myUnloadFlag := false;
finalization
if ((theirUnloadFlag <> nil) and not myUnloadFlag) then theirUnloadFlag^ := true;

end.

Реализация фабрики функции на Pascal
unit SumArgsFunc;

interface

uses Firebird;

type
TSumArgsInMsg = record
n1: Integer; n1Null: WordBool;
n2: Integer; n2Null: WordBool;
n3: Integer; n3Null: WordBool;

end;
PSumArgsInMsg = ^TSumArgsInMsg;

TSumArgsOutMsg = record
result: Integer; resultNull: WordBool;

end;
PSumArgsOutMsg = ^TSumArgsOutMsg;

TSumArgsFunctionFactory = class(IUdrFunctionFactoryImpl)
procedure dispose(); override;

procedure setup(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata; AInBuilder: IMetadataBuilder;
AOutBuilder: IMetadataBuilder); override;

function newItem(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata): IExternalFunction; override;

end;
…

Реализация фабрики функции на Pascal
implementation

{ TSumArgsFunctionFactory }

procedure TSumArgsFunctionFactory.dispose;
begin

Destroy;
end;

function TSumArgsFunctionFactory.newItem(AStatus: IStatus;
AContext: IExternalContext; AMetadata: IRoutineMetadata): IExternalFunction;
begin

Result := TSumArgsFunction.Create();
end;

procedure TSumArgsFunctionFactory.setup(AStatus: IStatus;
AContext: IExternalContext; AMetadata: IRoutineMetadata;
AInBuilder, AOutBuilder: IMetadataBuilder);
begin
end;
...

Реализация функции на Pascal
unit SumArgsFunc;

interface

uses Firebird;

type
…

TSumArgsInMsg = record
n1: Integer; n1Null: WordBool;
n2: Integer; n2Null: WordBool;
n3: Integer; n3Null: WordBool;

end;
PSumArgsInMsg = ^TSumArgsInMsg;

TSumArgsOutMsg = record
result: Integer; resultNull: WordBool;

end;
PSumArgsOutMsg = ^TSumArgsOutMsg;

TSumArgsFunction = class(IExternalFunctionImpl)
procedure dispose(); override;

procedure getCharSet(AStatus: IStatus; AContext: IExternalContext;
AName: PAnsiChar; ANameSize: Cardinal); override;

procedure execute(AStatus: IStatus; AContext: IExternalContext;
AInMsg: Pointer; AOutMsg: Pointer); override;

end;

Реализация функции на Pascal
implementation

...
{ TSumArgsFunction }

procedure TSumArgsFunction.dispose;
begin

Destroy;
end;

procedure TSumArgsFunction.execute(AStatus: IStatus; AContext: IExternalContext; AInMsg, AOutMsg: Pointer);
var

xInput: PSumArgsInMsg;
xOutput: PSumArgsOutMsg;
begin

// преобразовываем указатели на вход и выход к типизированным
 xInput := PSumArgsInMsg(AInMsg);
xOutput := PSumArgsOutMsg(AOutMsg);
// если один из аргументов NULL значит и результат NULL
xOutput^.resultNull := xInput^.n1Null or xInput^.n2Null or xInput^.n3Null;
xOutput^.result := xInput^.n1 + xInput^.n2 + xInput^.n3;
end;

procedure TSumArgsFunction.getCharSet(AStatus: IStatus; AContext: IExternalContext; AName: PAnsiChar; ANameSize: Cardinal);
begin
end;

end.

Реализация функции на С++
#include "UdrCppExample.h"

using namespace Firebird;

struct TSumArgsInMsg
{
ISC_LONG n1; ISC_SHORT n1Null;
ISC_LONG n2; ISC_SHORT n2Null;
ISC_LONG n3; ISC_SHORT n3Null;

};

struct TSumArgsOutMsg
{
ISC_LONG result; ISC_SHORT resultNull;

};

FB_UDR_BEGIN_FUNCTION(sum_args)
FB_UDR_EXECUTE_FUNCTION
{

auto input = reinterpret_cast<TSumArgsInMsg*>(in);
auto output = reinterpret_cast<TSumArgsOutMsg*>(out);

output->resultNull = (input->n1Null || input->n2Null || input->n3Null) ? FB_TRUE : FB_FALSE;
output->result = input->n1 + input->n2 + input->n3;

}
FB_UDR_END_FUNCTION

FB_UDR_IMPLEMENT_ENTRY_POINT

Реализация фабрики процедуры на Pascal
unit GenRowsProc;

interface

uses
Firebird, SysUtils;

type
TGenRowsFactory = class(IUdrProcedureFactoryImpl)

procedure dispose(); override;

procedure setup(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata; AInBuilder: IMetadataBuilder;
AOutBuilder: IMetadataBuilder); override;

function newItem(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata): IExternalProcedure; override;

end;

...

Реализация фабрики процедуры на Pascal
implementation

{ TGenRowsFactory }

procedure TGenRowsFactory.dispose;
begin

Destroy;
end;

function TGenRowsFactory.newItem(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata): IExternalProcedure;

begin
Result := TGenRowsProcedure.create;

end;

procedure TGenRowsFactory.setup(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata; AInBuilder, AOutBuilder: IMetadataBuilder);

begin
end;

...

Реализация процедуры на Pascal
interface
uses Firebird, SysUtils;
type
TInput = record
start: Integer; startNull: WordBool;
finish: Integer; finishNull: WordBool;

end;
PInput = ^TInput;

TOutput = record
n: Integer; nNull: WordBool;

end;
POutput = ^TOutput;

TGenRowsProcedure = class(IExternalProcedureImpl)
public

procedure dispose(); override;

procedure getCharSet(AStatus: IStatus; AContext: IExternalContext;
AName: PAnsiChar; ANameSize: Cardinal); override;

function open(AStatus: IStatus; AContext: IExternalContext; AInMsg: Pointer;
AOutMsg: Pointer): IExternalResultSet; override;

end;

TGenRowsResultSet = class(IExternalResultSetImpl)
Input: PInput;
Output: POutput;

procedure dispose(); override;
function fetch(AStatus: IStatus): Boolean; override;

end;

Реализация процедуры на Pascal
function TGenRowsProcedure.open(AStatus: IStatus; AContext: IExternalContext;
AInMsg, AOutMsg: Pointer): IExternalResultSet;

begin
Result := TGenRowsResultSet.create;
with TGenRowsResultSet(Result) do
begin
Input := AInMsg;
Output := AOutMsg;

end;

// если один из входных аргументов NULL ничего не возвращаем
 if PInput(AInMsg).startNull or PInput(AInMsg).finishNull then
begin
POutput(AOutMsg).nNull := True;
// намеренно ставим выходной результат таким, чтобы
// метод TGenRowsResultSet.fetch вернул false
Output.n := Input.finish;
exit;

end;
// проверки

 if PInput(AInMsg).start > PInput(AInMsg).finish then
raise Exception.Create('First parameter greater then second parameter.');

with TGenRowsResultSet(Result) do
begin
// начальное значение

 Output.nNull := False;
Output.n := Input.start - 1;

end;
end;

Реализация процедуры на Pascal
{ TGenRowsResultSet }

procedure TGenRowsResultSet.dispose;
begin
Destroy;

end;

// Если возвращает True то извлекается очередная запись из набора данных.
// Если возвращает False то записи в наборе данных закончились
// новые значения в выходном векторе вычисляются каждый раз
// при вызове этого метода
function TGenRowsResultSet.fetch(AStatus: IStatus): Boolean;
begin
Inc(Output.n);
Result := (Output.n <= Input.finish);

end;

Реализация процедуры на C++
#include "UdrCppExample.h"

using namespace Firebird;

struct TInput
{
ISC_LONG start; ISC_SHORT startNull;
ISC_LONG finish; ISC_SHORT finishNull;

};

struct TOutput
{
ISC_LONG result; ISC_SHORT resultNull;

};

Реализация процедуры на C++
FB_UDR_BEGIN_PROCEDURE(gen_rows)

FB_UDR_EXECUTE_PROCEDURE
{

input = reinterpret_cast<TInput*>(in);
output = reinterpret_cast<TOutput*>(out);

output->resultNull = (input->startNull || input->finishNull) ? FB_TRUE : FB_FALSE;
if (output->resultNull) {

output->result = input->finish;
} else {

if (input->start > input->finish) {
ISC_STATUS statusVector[] = {

isc_arg_gds, isc_random,
isc_arg_string, (ISC_STATUS)"First parameter greater then second parameter.",
isc_arg_end

};
throw Firebird::FbException(status, statusVector);

}
}

}

TInput* input = nullptr;
TOutput output = nullptr;

FB_UDR_FETCH_PROCEDURE
{

return output->result++ < input->finish;
}

FB_UDR_END_PROCEDURE

Реализация фабрики триггера на Pascal
unit TestTrigger;

interface

uses
Firebird, SysUtils;

type

TMyTriggerFactory = class(IUdrTriggerFactoryImpl)
procedure dispose(); override;

procedure setup(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata; AFieldsBuilder: IMetadataBuilder); override;

function newItem(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata): IExternalTrigger; override;

end;

Реализация фабрики триггера на Pascal
implementation

{ TMyTriggerFactory }

procedure TMyTriggerFactory.dispose;
begin
Destroy;

end;

function TMyTriggerFactory.newItem(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata): IExternalTrigger;

begin
Result := TMyTrigger.create;

end;

procedure TMyTriggerFactory.setup(AStatus: IStatus; AContext: IExternalContext;
AMetadata: IRoutineMetadata; AFieldsBuilder: IMetadataBuilder);

begin

end;

Реализация триггера на Pascal
interface

type
TFieldsMessage = record

Id: Integer; IdNull: WordBool;
A: Integer; ANull: WordBool;
B: Integer; BNull: WordBool;
Name: record

Length: Word;
Value: array [0 .. 399] of AnsiChar;

end;
NameNull: WordBool;

end;
PFieldsMessage = ^TFieldsMessage;

TMyTrigger = class(IExternalTriggerImpl)
procedure dispose(); override;

procedure getCharSet(AStatus: IStatus; AContext: IExternalContext;
AName: PAnsiChar; ANameSize: Cardinal); override;

procedure execute(AStatus: IStatus; AContext: IExternalContext;
AAction: Cardinal; AOldMsg: Pointer; ANewMsg: Pointer); override;

end;

Реализация триггера на Pascal
procedure TMyTrigger.execute(AStatus: IStatus; AContext: IExternalContext;
AAction: Cardinal; AOldMsg, ANewMsg: Pointer);

var
xOld, xNew: PFieldsMessage;

begin
xOld := PFieldsMessage(AOldMsg);
xNew := PFieldsMessage(ANewMsg);
case AAction of
IExternalTrigger.ACTION_INSERT:

begin
if xNew.BNull and not xNew.ANull then
begin
xNew.B := xNew.A + 1;
xNew.BNull := False;

end;
end;

IExternalTrigger.ACTION_UPDATE:
begin

if xNew.BNull and not xNew.ANull then
begin
xNew.B := xNew.A + 1;
xNew.BNull := False;

end;
end;

IExternalTrigger.ACTION_DELETE:
begin

end;
end;

end;

Отображение типов данных
Тип данных SQL С/С++ Pascal Макрос С/С++

BOOLEAN ISC_BOOLEAN Boolean, ByteBool FB_BOOLEAN

SMALLINT short Smallint FB_SMALLINT

INTEGER ISC_LONG Integer FB_INTEGER

BIGINT Int64 FB_BIGINT

FLOAT float Single FB_FLOAT

DOUBLE PRECISION double Double FB_DOUBLE

CHAR(N) char[M] array of AnsiChar[0 .. M -1] FB_CHAR

VARCHAR(N) vary<M>

record
Length: Word;
value: array of AnsiChar[0 .. M -1];

end

FB_INTL_VARCHAR

TIME ISC_TIME ISC_TIME FB_TIME

DATE ISC_DATE ISC_DATE FB_DATE

TIMESTAMP ISC_TIMESTAMP ISC_TIMESTAMP FB_TIMESTAMP

BLOB ISC_QUAD ISC_QUAD FB_BLOB

Принудительная установка типов на Pascal
procedure TSumArgsFunctionFactory.setup(AStatus: IStatus;
AContext: IExternalContext; AMetadata: IRoutineMetadata;
AInBuilder, AOutBuilder: IMetadataBuilder);

begin
// строим сообщение для входных параметров

 AInBuilder.setType(AStatus, 0, SQL_LONG + 1);
 AInBuilder.setType(AStatus, 1, SQL_LONG + 1);
 AInBuilder.setType(AStatus, 2, SQL_LONG + 1);
 // строим сообщение для выходных параметров
 AOutBuilder.setType(AStatus, 0, SQL_LONG + 1);
end;

Принудительная установка типов на C++
#include "UdrCppExample.h"

using namespace Firebird;

FB_UDR_BEGIN_FUNCTION(sum_args)
FB_UDR_MESSAGE(InMessage,

(FB_BIGINT, n1)
(FB_BIGINT, n2)
(FB_BIGINT, n3)

);

FB_UDR_MESSAGE(OutMessage,
(FB_BIGINT, result)

);

FB_UDR_EXECUTE_FUNCTION
{

out->resultNull = (in->n1Null || in->n2Null || in->n3Null) ? FB_TRUE : FB_FALSE;
out->result = in->n1 + in->n2 + in->n3;

}
FB_UDR_END_FUNCTION

FB_UDR_IMPLEMENT_ENTRY_POINT

Работа с BLOB на Pascal
var
att: IAttachment;
trx: ITransaction;
blob: IBlob;
buffer: array [0 .. 32767] of AnsiChar;
l: Integer;

begin
try
att := AContext.getAttachment(AStatus);
trx := AContext.getTransaction(AStatus);
blob := att.openBlob(AStatus, trx, ABlobId, 0, nil);
while True do

case blob.getSegment(AStatus, SizeOf(buffer), @buffer, @l) of
IStatus.RESULT_OK:
AStream.WriteBuffer(buffer, l);

IStatus.RESULT_SEGMENT:
AStream.WriteBuffer(buffer, l);

else
break;

end;
AStream.Position := 0;
blob.close(AStatus);
blob := nil;

finally
if Assigned(blob) then blob.release;
if Assigned(trx) then trx.release;
if Assigned(att) then att.release;

end;
end;

Работа с BLOB на C++
Firebird::AutoRelease<Firebird::IAttachment> att(context->getAttachment(status));
Firebird::AutoRelease<Firebird::ITransaction> tra(context->getTransaction(status));
Firebird::AutoRelease<Firebird::IBlob> bodyBlob(att->openBlob(status, tra, &in->body, 0, nullptr));
std::vector<char> vBuffer(MAX_SEGMENT_SIZE);
auto buffer = vBuffer.data();
while (true) {

unsigned int l = 0;
switch (bodyBlob->getSegment(status, MAX_SEGMENT_SIZE, buffer, &l))
{

case Firebird::IStatus::RESULT_OK:
case Firebird::IStatus::RESULT_SEGMENT:

requestBody.write(buffer, l);
continue;

default:
bodyBlob->close(status);
bodyBlob.release();
break;

}
}
// set beginning of stream
requestBody.seekg(0, std::ios::beg);

Контекст соединения и транзакции Pascal
var

att: IAttachment;
trx: ITransaction;
stmt: IStatement;

begin
try

att := AContext.getAttachment(AStatus);
trx := AContext.getTransaction(AStatus);
stmt := att.prepare(status, tra,

0, SQL_APPEND_LOG,
3, IStatement.PREPARE_PREFETCH_METADATA

);
stmt.execute(status, tra,

input.getMetadata(),
input.getData(),
nil, nil

);
stmt.free(status);

finally
if Assigned(stmt) then stmt.release;
if Assigned(trx) then trx.release;
if Assigned(att) then att.release;

end;
end;

Контекст соединения и транзакции C++
Firebird::AutoRelease<Firebird::IAttachment> att(context->getAttachment(status));
Firebird::AutoRelease<Firebird::ITransaction> tra(context->getTransaction(status));
Firebird::AutoRelease<Firebird::IStatement> stmt(

att->prepare(status, tra,
0, SQL_APPEND_LOG,
3,
IStatement::PREPARE_PREFETCH_METADATA

)
);
stmt->execute(status, tra,

input.getMetadata(),
input.getData(),
nullptr, nullptr

);
stmt->free(status);
stmt.release();

Метод getCharset
procedure TJsonFunction.getCharSet(AStatus: IStatus; AContext: IExternalContext;

AName: PAnsiChar; ANameSize: Cardinal);
begin

FillChar(AName, ANameSize, #0);
StrCopy(AName, 'UTF8');

end;

FB_UDR_BEGIN_PROCEDURE(ftsLogByDdKey)
...

void getCharSet(ThrowStatusWrapper* status, IExternalContext* context,
char* name, unsigned nameSize)

{
memset(name, 0, nameSize);

const std::string charset = "UTF8";
charset.copy(name, charset.length());

}

FB_UDR_EXECUTE_PROCEDURE
{
}

FB_UDR_END_PROCEDURE

Методы освобождающие интерфейс
• IAttachment::detach
• IAttachment::dropDatabase
• ITransaction::commit
• ITransaction::rollback
• IStatement::free
• IResultSet::close
• IBlob::cancel
• IBlob::close
• IService::detach
• IEvents::cancel

Вопросы

Спасибо за внимание!

