
Улучшения оптимизатора в Улучшения оптимизатора в
Firebird 5.0Firebird 5.0

Дмитрий Еманов
dimitr@firebirdsql.org

Firebird Project
https://www.firebirdsql.org/

РЕД СОФТ
https://www.red-soft.ru/

mailto:dimitr@firebirdsql.org
https://www.firebirdsql.org/
https://www.red-soft.ru/

2

2Firebird Conf `2023 - Москва

Больше информации в explained-плане

v5.0 Beta 1

 Тип курсора (select expression / sub-query / named cursor)
 Атрибуты курсора (invariant / scrollable)
 Номера позиций (строка/столбец) в PSQL

3

3Firebird Conf `2023 - Москва

Больше информации в explained-плане

v5.0 Beta 1

 Тип курсора (select expression / sub-query / named cursor)
 Атрибуты курсора (invariant / scrollable)
 Номера позиций (строка/столбец) в PSQL

В очереди

 Возможность рекурсивного вывода планов
для селективных процедур

 Вывод оценочной кардинальности
для каждого узла расширенного плана

4

4Firebird Conf `2023 - Москва

Раннее вычисление инвариантных предикатов

Примеры

 Фейковые условия
WHERE 1 = 0

 Инвариантные условия:
WHERE RDB$GET_CONTEXT(«USER_SESSION», «PARAM») = 1

 Еще сложнее:
WITH RECURSIVE TR AS (
 SELECT T.*, 1 AS LEVEL FROM "Tree" T
 WHERE PARENT_ID IS NULL
 UNION ALL
 SELECT T.*, TR.LEVEL + 1 AS LEVEL FROM "Tree" T, TR
 WHERE T.PARENT_ID = TR.ID AND TR.LEVEL < :MAX_LEVEL
)
SELECT ID, LEVEL FROM TR

5

5Firebird Conf `2023 - Москва

Раннее вычисление инвариантных предикатов

В плане

Select Expression
 -> Filter (preliminary)
 -> Table "T1" Full Scan

Select Expression
 -> Recursion
 -> Filter
 -> Table "Tree" as "TR T" Full Scan
 -> Filter (preliminary)
 -> Filter
 -> Table "Tree" as "TR T" Full Scan

6

6Firebird Conf `2023 - Москва

Трансформация outer join в inner join

v5.0 Beta 1

 Если WHERE-предикат не умеет обрабатывать NULLы в
«правой» таблице, то во внешнем джойне нет смысла

 A LEFT JOIN B ON A.ID = B.ID WHERE B.FLD1 = 0

 Планы могут измениться!
 Если нужно сохранить «прибитый гвоздиком» порядок

соединения, то B.FLD1 IS NOT NULL

TODO

 Параметр конфига — нужен или нет?

7

7Firebird Conf `2023 - Москва

Стоимостной выбор между HASH и MERGE JOIN

MERGE JOIN

 Был «заглушен» в Firebird 3.0 в пользу HASH JOIN
 Но в ряде случаев может таки выигрывать
 В Firebird 5.0 разрешен снова,

сделан выбор на основе стоимости

TODO

 MERGE JOIN можно использовать также в случае
предварительно сортированных потоков

8

8Firebird Conf `2023 - Москва

Стоимостной выбор между NESTED LOOP и HASH JOIN

Проблема

 PLAN JOIN (T1 …, T2 INDEX (T2_PK))
 Все плохо, если выборка из T1 превышает размер T2
 cardinality(T1) = 100000, cardinality(T2) = 100 —

каждая запись T2 читается 1000 раз!
 Плюс как минимум 100000 индексных фетчей!

9

9Firebird Conf `2023 - Москва

Стоимостной выбор между NESTED LOOP и HASH JOIN

Проблема

 PLAN JOIN (T1 …, T2 INDEX (T2_PK))
 Все плохо, если выборка из T1 превышает размер T2
 cardinality(T1) = 100000, cardinality(T2) = 100 —

каждая запись T2 читается 1000 раз!
 Плюс как минимум 100000 индексных фетчей!

Решение

 Читать T2 однократно, Ватсон!
 В этом нам поможет HASH JOIN
 Стоимость хеширования тоже ненулевая,

надо считать что выгоднее

10

10Firebird Conf `2023 - Москва

Стоимостной выбор между NESTED LOOP и HASH JOIN

Было

 PLAN JOIN (T1 NATURAL, T2 INDEX (T2_PK))

 Elapsed time = 1.253 sec

Стало

 PLAN HASH (T1 NATURAL, T2 NATURAL)

 Elapsed time = 0.286 sec

11

11Firebird Conf `2023 - Москва

Трансформация подзапросов в semi-joins

Идея

 IN/EXISTS это по сути semi-join
 Доработка алгоритмов NESTED LOOP и HASH / MERGE JOIN

для поддержки семантики semi-join (и заодно anti-join)
 Трансформация IN/EXISTS в semi-join
 Далее оптимизатор выбирает алгоритм соединения
 Ситуация аналогична предыдущей — если подзапрос

возвращает немного строк, то его выгоднее кешировать, чем
перевыполнять каждый раз

12

12Firebird Conf `2023 - Москва

Трансформация подзапросов в semi-joins

Идея

 IN/EXISTS это по сути semi-join
 Доработка алгоритмов NESTED LOOP и HASH / MERGE JOIN

для поддержки семантики semi-join (и заодно anti-join)
 Трансформация IN/EXISTS в semi-join
 Далее оптимизатор выбирает алгоритм соединения
 Ситуация аналогична предыдущей — если подзапрос

возвращает немного строк, то его выгоднее кешировать, чем
перевыполнять каждый раз

Что дальше

 Трансформация NOT IN / NOT EXISTS anti-join→

13

13Firebird Conf `2023 - Москва

Трансформация подзапросов в inner joins

Идея

 where t1.id in (select t2.id from t2 where …)
 t1 → semi-join (select t2.id from t2 where …) on t1.id = t2.id
 t1 → semi-join t2 on t1.id = t2.id and …

 where t1.id in (select t2.id from t2 where …)
 t1 → join (select distinct t2.id from t2 where …) on t1.id = t2.id

14

14Firebird Conf `2023 - Москва

Трансформация подзапросов в inner joins

Идея

 where t1.id in (select t2.id from t2 where …)
 t1 → semi-join (select t2.id from t2 where …) on t1.id = t2.id
 t1 → semi-join t2 on t1.id = t2.id and …

 where t1.id in (select t2.id from t2 where …)
 t1 → join (select distinct t2.id from t2 where …) on t1.id = t2.id

Что это нам дает

 Не только порядок соединения T1 T2, но и обратный→
 При обратном порядке уже может оказаться дешевле

алгоритм NESTED LOOP
 Но DISTINCT это лишняя сортировка
 Пусть оптимизатор сам оценивает!

15

15Firebird Conf `2023 - Москва

Эффективное выполнение IN <constant list>

Сейчас

 Индексный поиск на каждое значение из списка
 Номера записей выставляются в битмапе
 Если ключей много, то оптимизатор отказывается от

использования индекса
 Лимит в 1500 элементов, ибо внутри трансформируется в

 FLD = 1 OR FLD = 2 OR …
и работает рекурсивно

16

16Firebird Conf `2023 - Москва

Эффективное выполнение IN <constant list>

Что можно сделать

 Не трансформировать список, передавать и обрабатывать
«как есть» (прощаемся с лимитом на число элементов)

 Значения отсортировать
 Если индекса нет — бинарный поиск по отсортированному

массиву
 Если есть — один индексный поиск по диапазону

от min-значения до max-значения
 При этом не обязательно перебирать все ключи на всех

листовых страницах, можно двигаться «скачками»
 При небольшом числе значений старый способ может

оказаться быстрее, нужна оценка стоимости обоих вариантов

17

17Firebird Conf `2023 - Москва

Подсказка OPTIMIZE FOR

Идея

 Указывает предпочтения клиента по выборке записей
 ALL ROWS / FIRST ROWS
 Неявно используется с Firebird 3.0 (FIRST <n>, EXISTS)
 Явно и в синтаксисе и в конфиге — в Firebird 5.0
 Влияет на выбор плана, в частности SORT vs ORDER

TODO

 Стоимостная оценка с учетом числа результирующих строк
 Управление на уровне сессии (DPB / ALTER SESSION)

18

18Firebird Conf `2023 - Москва

Вопросы?Вопросы?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

